BIOLOGY (Ecological) | Curriculum Map and Pacing Guide

COURSE DESCRIPTION:	Course SCI320
Course concentrates on the whole organism – its community and contribution to and dependence upon life.	1 year, 1 credit
Course emphasis is on the interrelationship of all living things and includes themes: living things changes	Grades 10
through time; diversity of type and unit of pattern; genetic continuity; relationship between organism and	Prerequisite: Preferred
environment; biological roots of behavior; relationship between structure and function; maintenance of life	Physical Science and
while changing; and intellectual history of biological concepts. A vertebrate specimen is dissected, and	teacher recommendation
laboratory investigations are integral to course.	

QUARTER 1

Topics: Study of Life: Introduction to Biology; Nature of Science; Methods of Science

Key Terms: Organisms, Biology/BiologistSpecies, Homeostasis, Adaptation, Science, Theory, Law, Observation, Inference, Scientific Method, Hypothesis, Control Group, experimental Group, Independent Variable, Dependent Variable, constant, SI unit

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Science Inquiry and Application	Identify questions and concepts that guide scientific	Fermentation Lab Part I
	investigations:	
	 Design and conduct scientific investigation. 	
	 Use technology and mathematics to improve 	
	investigations and communications.	
	- Formulate and revise explanations and models using	
	logic and evidence (critical thinking);	
	- Recognize and analyze explanations and models; and	
	 Communicate and support a scientific argument. 	

QUARTER 1

Topic: Chemistry of Biology; Cellular Structure and Function; Cellular Reproduction; Energy

Key Terms: <u>Chemistry of Biology</u>: Atom, nucleus, proton, neutron, electron, element, Isotope, compound, covalent bond, molecule, ion, ionic bond, van der walls forces, chemical reaction, reactant, product, activation energy, catalyst, enzyme, Substrate, active site, polar molecule, hydrogen bond, mixture, solution, solvent, Solute, acid, base, pH, buffer, macromolecules, polymer, carbohydrate, lipid, protein, amino acid, Nucleic acid, nucleotides peptide bond, polypeptide, ATP, RNA, DNA, Monosaccharide, disaccharide, polysaccharide, glycogen, starch <u>Cellular Structure and Function</u>: Cell Theory, Anton van Leeuwenhoek, Robert Hooke, Matthias Schleiden/Theodor Schwann, Louis Pasteur, compound microscope, Electron microscope, Cell, prokaryotic cell, eukaryotic cell, nucleus, organelle, Selective permeability, Phospholipid bilayer, transport protein, fluid mosaic model, concentration gradient, cytoplasm/cytosol, cytoskeleton, microtubules, microfilaments, Chromosomes, Chromatin, Micrometer (μm), nucleolus, cell/plasma membrane, cell wall, lysosome, centrioles, Chloroplast, thylakoids, cell wall, Vacuole, cilia, flagella, DNA/RNA, Nuclear envelope, ribosomes, Chlorophyll, Golgi complex/apparatus, endoplasmic reticulum, mitochondria, diffusion, dynamic equilibrium, facilitated diffusion, carrier protein, osmosis, hypertonic, hypotonic, isotonic, Passive transport, active transport, endocytosis, exocytosis

<u>Cellular Reproduction (Mitosis)</u>: Cell cycle, Interphase, G₁ Phase, S phase, G₂ Phase, M phase, mitosis, cytokinesis, Chromosomes, Chromatin, Prophase, Sister Chromatids, Centromere, Spindle apparatus, metaphase, anaphase, telophase, Cell Plate, Cyclin/cyclin-dependent kinases (CDKs), Cancer, Carcinogens, Oncogene (not in book), apoptosis,

Stem Cells (Embryonic vs. Adult)

Energy (Photosynthesis and Cellular Respiration); Plant Structure and Function: Energy, Thermodynamics, metabolism, photosynthesis, cellular respiration, adenosine triphosphate (ATP), Thylakoid, Granum/Grana, Stroma, pigment, NADP+, Calvin Cycle, Rubisco, PSI/II, C-3/C-4/CAM plants, Anaerobic process, aerobic respiration, aerobic process, glycolysis, Krebs cycle, fermentation, electron transport system, Mitochondria matrix, FADH+, NAD+, Lactic Acid

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Cells		
• B.C.1 : Cell structure and		
function • Structure, function		
and interrelatedness of cell		
organelles • Eukaryotic cells		
and prokaryotic cells		
• B.C.2 : Cellular processes •		
Characteristics of life		
regulated by cellular		
processes • Photosynthesis,		

QUARTER 1

Topic: Chemistry of Biology; Cellular Structure and Function; Cellular Reproduction; Energy

Key Terms: Chemistry of Biology: Atom, nucleus, proton, neutron, electron, element, Isotope, compound, covalent bond, molecule, ion, ionic bond, van der walls forces, chemical reaction, reactant, product, activation energy, catalyst, enzyme, Substrate, active site, polar molecule, hydrogen bond, mixture, solution, solvent, Solute, acid, base, pH, buffer, macromolecules, polymer, carbohydrate, lipid, protein, amino acid, Nucleic acid, nucleotides peptide bond, polypeptide, ATP, RNA, DNA, Monosaccharide, disaccharide, polysaccharide, glycogen, starch Cellular Structure and Function: Cell Theory, Anton van Leeuwenhoek, Robert Hooke, Matthias Schleiden/Theodor Schwann, Louis Pasteur, compound microscope, Electron microscope, Cell, prokaryotic cell, eukaryotic cell, nucleus, organelle, Selective permeability, Phospholipid bilayer, transport protein, fluid mosaic model, concentration gradient, cytoplasm/cytosol, cytoskeleton, microtubules, microfilaments, Chromosomes, Chromatin, Micrometer (μm), nucleolus, cell/plasma membrane, cell wall, lysosome, centrioles, Chloroplast, thylakoids, cell wall, Vacuole, cilia, flagella, DNA/RNA, Nuclear envelope, ribosomes, Chlorophyll, Golgi complex/apparatus, endoplasmic reticulum, mitochondria, diffusion, dynamic equilibrium, facilitated diffusion, carrier protein, osmosis, hypertonic, hypotonic, isotonic, Passive transport, active transport, endocytosis, exocytosis

Cellular Reproduction (Mitosis): Cell cycle, Interphase, G1 Phase, S phase, G2 Phase, M phase, mitosis, cytokinesis, Chromosomes, Chromatin, Prophase, Sister Chromatids, Centromere, Spindle apparatus, metaphase, anaphase, telophase, Cell Plate, Cyclin/cyclin-dependent kinases (CDKs), Cancer, Carcinogens, Oncogene (not in book), apoptosis,

Stem Cells (Embryonic vs. Adult)

Energy (Photosynthesis and Cellular Respiration); Plant Structure and Function: Energy, Thermodynamics, metabolism, photosynthesis, cellular respiration, adenosine triphosphate (ATP), Thylakoid, Granum/Grana, Stroma, pigment, NADP+, Calvin Cycle, Rubisco, PSI/II, C-3/C-4/CAM plants, Anaerobic process, aerobic respiration, aerobic process, glycolysis, Krebs cycle, fermentation, electron transport system, Mitochondria matrix, FADH+, NAD+, Lactic Acid

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
chemosynthesis, cellular		
respiration, biosynthesis of		
macromolecule s		
SS: Cells /B.C.1	Identify subatomic particles and describe how they are	
C: 6	arranged in atoms.	
SS: Cells /B.C.1	Explain the fundamental principles of the pH scale and	pH LabQuest/probe lab
QC: A.5.f	consequences of having the different concentrations of	
C: 6	hydrogen and hydroxide ions.	
SS: Cells /B.C.1	Define and explain the unique properties of water that are	
C: 6	essential to living organisms.	

QUARTER 1

Topic: Chemistry of Biology; Cellular Structure and Function; Cellular Reproduction; Energy

Key Terms: Chemistry of Biology: Atom, nucleus, proton, neutron, electron, element, Isotope, compound, covalent bond, molecule, ion, ionic bond, van der walls forces, chemical reaction, reactant, product, activation energy, catalyst, enzyme, Substrate, active site, polar molecule, hydrogen bond, mixture, solution, solvent, Solute, acid, base, pH, buffer, macromolecules, polymer, carbohydrate, lipid, protein, amino acid, Nucleic acid, nucleotides peptide bond, polypeptide, ATP, RNA, DNA, Monosaccharide, disaccharide, polysaccharide, glycogen, starch Cellular Structure and Function: Cell Theory, Anton van Leeuwenhoek, Robert Hooke, Matthias Schleiden/Theodor Schwann, Louis Pasteur, compound microscope, Electron microscope, Cell, prokaryotic cell, eukaryotic cell, nucleus, organelle, Selective permeability, Phospholipid bilayer, transport protein, fluid mosaic model, concentration gradient, cytoplasm/cytosol, cytoskeleton, microtubules, microfilaments, Chromosomes, Chromatin, Micrometer (μm), nucleolus, cell/plasma membrane, cell wall, lysosome, centrioles, Chloroplast, thylakoids, cell wall, Vacuole, cilia, flagella, DNA/RNA, Nuclear envelope, ribosomes, Chlorophyll, Golgi complex/apparatus, endoplasmic reticulum, mitochondria, diffusion, dynamic equilibrium, facilitated diffusion, carrier protein, osmosis, hypertonic, hypotonic, isotonic, Passive transport, active transport, endocytosis, exocytosis

Cellular Reproduction (Mitosis): Cell cycle, Interphase, G_1 Phase, S phase, G_2 Phase, M phase, mitosis, cytokinesis, Chromosomes, Chromatin, Prophase, Sister Chromatids, Centromere, Spindle apparatus, metaphase, anaphase, telophase, Cell Plate, Cyclin/cyclin-dependent kinases (CDKs), Cancer, Carcinogens, Oncogene (not in book), apoptosis,

Stem Cells (Embryonic vs. Adult)

Energy (Photosynthesis and Cellular Respiration); Plant Structure and Function: Energy, Thermodynamics, metabolism, photosynthesis, cellular respiration, adenosine triphosphate (ATP), Thylakoid, Granum/Grana, Stroma, pigment, NADP+, Calvin Cycle, Rubisco, PSI/II, C-3/C-4/CAM plants, Anaerobic process, aerobic respiration, aerobic process, glycolysis, Krebs cycle, fermentation, electron transport system, Mitochondria matrix, FADH+, NAD+, Lactic Acid

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Cells /B.C.1	Explain the difference between organic and inorganic	
C: 6 (and 1)	compounds.	
SS: Cells /B.C.1	Describe how cells "function within a narrow range of	Enzyme Labquest/ probe lab
C: 6	temperature and pH."	
SS: Cells /B.C.2	Describe how "a special group of proteins, enzymes, enables Lactaid/Lactose demo	
C: 6	chemical reactions to occur in living systems."	HHMI "Got Lactose"
SS: Cells /B.C.2	Describe the function of enzymes, including how enzyme-	Jello Lab
C: 6	substrate specificity works, in biochemical reactions.	
SS: Cells /B.C.2	Explain how cells store energy temporarily as ATP.	
C: 6		

QUARTER 1

Topic: Chemistry of Biology; Cellular Structure and Function; Cellular Reproduction; Energy

Key Terms: <u>Chemistry of Biology</u>: Atom, nucleus, proton, neutron, electron, element, Isotope, compound, covalent bond, molecule, ion, ionic bond, van der walls forces, chemical reaction, reactant, product, activation energy, catalyst, enzyme, Substrate, active site, polar molecule, hydrogen bond, mixture, solution, solvent, Solute, acid, base, pH, buffer, macromolecules, polymer, carbohydrate, lipid, protein, amino acid, Nucleic acid, nucleotides peptide bond, polypeptide, ATP, RNA, DNA, Monosaccharide, disaccharide, polysaccharide, glycogen, starch <u>Cellular Structure and Function</u>: Cell Theory, Anton van Leeuwenhoek, Robert Hooke, Matthias Schleiden/Theodor Schwann, Louis Pasteur, compound microscope, Electron microscope, Cell, prokaryotic cell, eukaryotic cell, nucleus, organelle, Selective permeability, Phospholipid bilayer, transport protein, fluid mosaic model, concentration gradient, cytoplasm/cytosol, cytoskeleton, microtubules, microfilaments, Chromosomes, Chromatin, Micrometer (μm), nucleolus, cell/plasma membrane, cell wall, lysosome, centrioles, Chloroplast, thylakoids, cell wall, Vacuole, cilia, flagella, DNA/RNA, Nuclear envelope, ribosomes, Chlorophyll, Golgi complex/apparatus, endoplasmic reticulum, mitochondria, diffusion, dynamic equilibrium, facilitated diffusion, carrier protein, osmosis, hypertonic, hypotonic, isotonic, Passive transport, active transport, endocytosis, exocytosis

<u>Cellular Reproduction (Mitosis)</u>: Cell cycle, Interphase, G₁ Phase, S phase, G₂ Phase, M phase, mitosis, cytokinesis, Chromosomes, Chromatin, Prophase, Sister Chromatids, Centromere, Spindle apparatus, metaphase, anaphase, telophase, Cell Plate, Cyclin/cyclin-dependent kinases (CDKs), Cancer, Carcinogens, Oncogene (not in book), apoptosis,

Stem Cells (Embryonic vs. Adult)

Energy (Photosynthesis and Cellular Respiration); Plant Structure and Function: Energy, Thermodynamics, metabolism, photosynthesis, cellular respiration, adenosine triphosphate (ATP), Thylakoid, Granum/Grana, Stroma, pigment, NADP+, Calvin Cycle, Rubisco, PSI/II, C-3/C-4/CAM plants, Anaerobic process, aerobic respiration, aerobic process, glycolysis, Krebs cycle, fermentation, electron transport system, Mitochondria matrix, FADH+, NAD+, Lactic Acid

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Cells /B.C.1	Compare the types of bonding between atoms to form	
C: 6	molecules.	
SS: Cells /B.C.1	Describe the molecular composition of a living cell	Macromolecule Pogil
C: 6	specifically its "elements and complex molecules."	
SS: Cells /B.C.1	Describe the general structure and function including	Carbohydrate Lab
C: 6	common functional groups of monosaccharides,	
	disaccharides, polysaccharides, carbohydrates, fatty acids,	
	glycerol, glycerides, lipids, amino acids, dipeptides,	
	polypeptides, protein and nucleic acids.	

QUARTER 1

Topic: Chemistry of Biology; Cellular Structure and Function; Cellular Reproduction; Energy

Key Terms: <u>Chemistry of Biology</u>: Atom, nucleus, proton, neutron, electron, element, Isotope, compound, covalent bond, molecule, ion, ionic bond, van der walls forces, chemical reaction, reactant, product, activation energy, catalyst, enzyme, Substrate, active site, polar molecule, hydrogen bond, mixture, solution, solvent, Solute, acid, base, pH, buffer, macromolecules, polymer, carbohydrate, lipid, protein, amino acid, Nucleic acid, nucleotides peptide bond, polypeptide, ATP, RNA, DNA, Monosaccharide, disaccharide, polysaccharide, glycogen, starch <u>Cellular Structure and Function</u>: Cell Theory, Anton van Leeuwenhoek, Robert Hooke, Matthias Schleiden/Theodor Schwann, Louis Pasteur, compound microscope, Electron microscope, Cell, prokaryotic cell, eukaryotic cell, nucleus, organelle, Selective permeability, Phospholipid bilayer, transport protein, fluid mosaic model, concentration gradient, cytoplasm/cytosol, cytoskeleton, microtubules, microfilaments, Chromosomes, Chromatin, Micrometer (μm), nucleolus, cell/plasma membrane, cell wall, lysosome, centrioles, Chloroplast, thylakoids, cell wall, Vacuole, cilia, flagella, DNA/RNA, Nuclear envelope, ribosomes, Chlorophyll, Golgi complex/apparatus, endoplasmic reticulum, mitochondria, diffusion, dynamic equilibrium, facilitated diffusion, carrier protein, osmosis, hypertonic, hypotonic, isotonic, Passive transport, active transport, endocytosis, exocytosis

<u>Cellular Reproduction (Mitosis)</u>: Cell cycle, Interphase, G₁ Phase, S phase, G₂ Phase, M phase, mitosis, cytokinesis, Chromosomes, Chromatin, Prophase, Sister Chromatids, Centromere, Spindle apparatus, metaphase, anaphase, telophase, Cell Plate, Cyclin/cyclin-dependent kinases (CDKs), Cancer, Carcinogens, Oncogene (not in book), apoptosis,

Stem Cells (Embryonic vs. Adult)

Energy (Photosynthesis and Cellular Respiration); Plant Structure and Function: Energy, Thermodynamics, metabolism, photosynthesis, cellular respiration, adenosine triphosphate (ATP), Thylakoid, Granum/Grana, Stroma, pigment, NADP+, Calvin Cycle, Rubisco, PSI/II, C-3/C-4/CAM plants, Anaerobic process, aerobic respiration, aerobic process, glycolysis, Krebs cycle, fermentation, electron transport system, Mitochondria matrix, FADH+, NAD+, Lactic Acid

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Cells /B.C.1	Describe the difference between ions and atoms and the	
C: 6	importance of ions in biological processes.	
SS: Cells /B.C.2	Explain how "a complex network of proteins provides	Cell Membrane Model
C: 7	organization and shape" to a cell.	Pogil Plasma Membrane
SS: Cells /B.C.1	Describe the functions of all major cell organelles, including	Cell Diagram Handout
C: 7	nucleus, ER, RER, Golgi apparatus, ribosome, mitochondria,	Cell Organelle Handout
	microtubules, microfilaments, lysosomes, centrioles, and cell	
	membrane.	
SS: Cells /B.C.2	Contrast the structure and function of subcellular	
C: 7	components of motility (e.g. cilia, flagella, pseudopods)	

QUARTER 1

Topic: Chemistry of Biology; Cellular Structure and Function; Cellular Reproduction; Energy

Key Terms: <u>Chemistry of Biology</u>: Atom, nucleus, proton, neutron, electron, element, Isotope, compound, covalent bond, molecule, ion, ionic bond, van der walls forces, chemical reaction, reactant, product, activation energy, catalyst, enzyme, Substrate, active site, polar molecule, hydrogen bond, mixture, solution, solvent, Solute, acid, base, pH, buffer, macromolecules, polymer, carbohydrate, lipid, protein, amino acid, Nucleic acid, nucleotides peptide bond, polypeptide, ATP, RNA, DNA, Monosaccharide, disaccharide, polysaccharide, glycogen, starch <u>Cellular Structure and Function</u>: Cell Theory, Anton van Leeuwenhoek, Robert Hooke, Matthias Schleiden/Theodor Schwann, Louis Pasteur, compound microscope, Electron microscope, Cell, prokaryotic cell, eukaryotic cell, nucleus, organelle, Selective permeability, Phospholipid bilayer, transport protein, fluid mosaic model, concentration gradient, cytoplasm/cytosol, cytoskeleton, microtubules, microfilaments, Chromosomes, Chromatin, Micrometer (μm), nucleolus, cell/plasma membrane, cell wall, lysosome, centrioles, Chloroplast, thylakoids, cell wall, Vacuole, cilia, flagella, DNA/RNA, Nuclear envelope, ribosomes, Chlorophyll, Golgi complex/apparatus, endoplasmic reticulum, mitochondria, diffusion, dynamic equilibrium, facilitated diffusion, carrier protein, osmosis, hypertonic, hypotonic, isotonic, Passive transport, active transport, endocytosis, exocytosis

<u>Cellular Reproduction (Mitosis)</u>: Cell cycle, Interphase, G₁ Phase, S phase, G₂ Phase, M phase, mitosis, cytokinesis, Chromosomes, Chromatin, Prophase, Sister Chromatids, Centromere, Spindle apparatus, metaphase, anaphase, telophase, Cell Plate, Cyclin/cyclin-dependent kinases (CDKs), Cancer, Carcinogens, Oncogene (not in book), apoptosis,

Stem Cells (Embryonic vs. Adult)

Energy (Photosynthesis and Cellular Respiration); Plant Structure and Function: Energy, Thermodynamics, metabolism, photosynthesis, cellular respiration, adenosine triphosphate (ATP), Thylakoid, Granum/Grana, Stroma, pigment, NADP+, Calvin Cycle, Rubisco, PSI/II, C-3/C-4/CAM plants, Anaerobic process, aerobic respiration, aerobic process, glycolysis, Krebs cycle, fermentation, electron transport system, Mitochondria matrix, FADH+, NAD+, Lactic Acid

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Cells /B.C.1	Explain how "a complex network of proteins provides	Cell Membrane Model
C: 7	organization and shape" to a cell.	
SS: Cells /B.C.2	Describe how cells "function within a narrow range of	pH Lab
C: 7	temperature and pH."	
SS: Cells /B.C.2	Distinguish between "the chemical reactions of cells that	Organic Compound cutouts
C: 7	involve water and carbohydrates, proteins, lipids, and	
	nucleic acids."	
SS: Cells /B.C.2	Describe how "a special group of proteins, enzymes, enables	Jello/detergent lab
C: 7	chemical reactions to occur in living systems."	Enzyme Lab (Catalase)

QUARTER 1

Topic: Chemistry of Biology; Cellular Structure and Function; Cellular Reproduction; Energy

Key Terms: <u>Chemistry of Biology</u>: Atom, nucleus, proton, neutron, electron, element, Isotope, compound, covalent bond, molecule, ion, ionic bond, van der walls forces, chemical reaction, reactant, product, activation energy, catalyst, enzyme, Substrate, active site, polar molecule, hydrogen bond, mixture, solution, solvent, Solute, acid, base, pH, buffer, macromolecules, polymer, carbohydrate, lipid, protein, amino acid, Nucleic acid, nucleotides peptide bond, polypeptide, ATP, RNA, DNA, Monosaccharide, disaccharide, polysaccharide, glycogen, starch <u>Cellular Structure and Function</u>: Cell Theory, Anton van Leeuwenhoek, Robert Hooke, Matthias Schleiden/Theodor Schwann, Louis Pasteur, compound microscope, Electron microscope, Cell, prokaryotic cell, eukaryotic cell, nucleus, organelle, Selective permeability, Phospholipid bilayer, transport protein, fluid mosaic model, concentration gradient, cytoplasm/cytosol, cytoskeleton, microtubules, microfilaments, Chromosomes, Chromatin, Micrometer (μm), nucleolus, cell/plasma membrane, cell wall, lysosome, centrioles, Chloroplast, thylakoids, cell wall, Vacuole, cilia, flagella, DNA/RNA, Nuclear envelope, ribosomes, Chlorophyll, Golgi complex/apparatus, endoplasmic reticulum, mitochondria, diffusion, dynamic equilibrium, facilitated diffusion, carrier protein, osmosis, hypertonic, hypotonic, isotonic, Passive transport, active transport, endocytosis, exocytosis

<u>Cellular Reproduction (Mitosis)</u>: Cell cycle, Interphase, G₁ Phase, S phase, G₂ Phase, M phase, mitosis, cytokinesis, Chromosomes, Chromatin, Prophase, Sister Chromatids, Centromere, Spindle apparatus, metaphase, anaphase, telophase, Cell Plate, Cyclin/cyclin-dependent kinases (CDKs), Cancer, Carcinogens, Oncogene (not in book), apoptosis,

Stem Cells (Embryonic vs. Adult)

Energy (Photosynthesis and Cellular Respiration); Plant Structure and Function: Energy, Thermodynamics, metabolism, photosynthesis, cellular respiration, adenosine triphosphate (ATP), Thylakoid, Granum/Grana, Stroma, pigment, NADP+, Calvin Cycle, Rubisco, PSI/II, C-3/C-4/CAM plants, Anaerobic process, aerobic respiration, aerobic process, glycolysis, Krebs cycle, fermentation, electron transport system, Mitochondria matrix, FADH+, NAD+, Lactic Acid

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Cells /B.C.1	Analyze the similarities and differences among a plant	Cell Observation Lab (plant and animal) -
C: 7	versus animal cell and eukaryotic versus prokaryotic cells.	microscope
SS: Cells /B.C.1 C: 7	Describe the basic process of mitosis.	POGIL Mitosis
C: 7 SS: Cells /B.C.2 C: 7	Describe and contrast these types of cell transport: osmosis, diffusion, facilitated diffusion, and active transport.	Diffusion lab osmosis Agar block lab
SS: Cells /B.C.2 C: 7	Explain how the cell membrane maintains homeostasis.	

QUARTER 1

Topic: Chemistry of Biology; Cellular Structure and Function; Cellular Reproduction; Energy

Key Terms: <u>Chemistry of Biology</u>: Atom, nucleus, proton, neutron, electron, element, Isotope, compound, covalent bond, molecule, ion, ionic bond, van der walls forces, chemical reaction, reactant, product, activation energy, catalyst, enzyme, Substrate, active site, polar molecule, hydrogen bond, mixture, solution, solvent, Solute, acid, base, pH, buffer, macromolecules, polymer, carbohydrate, lipid, protein, amino acid, Nucleic acid, nucleotides peptide bond, polypeptide, ATP, RNA, DNA, Monosaccharide, disaccharide, polysaccharide, glycogen, starch <u>Cellular Structure and Function</u>: Cell Theory, Anton van Leeuwenhoek, Robert Hooke, Matthias Schleiden/Theodor Schwann, Louis Pasteur, compound microscope, Electron microscope, Cell, prokaryotic cell, eukaryotic cell, nucleus, organelle, Selective permeability, Phospholipid bilayer, transport protein, fluid mosaic model, concentration gradient, cytoplasm/cytosol, cytoskeleton, microtubules, microfilaments, Chromosomes, Chromatin, Micrometer (μm), nucleolus, cell/plasma membrane, cell wall, lysosome, centrioles, Chloroplast, thylakoids, cell wall, Vacuole, cilia, flagella, DNA/RNA, Nuclear envelope, ribosomes, Chlorophyll, Golgi complex/apparatus, endoplasmic reticulum, mitochondria, diffusion, dynamic equilibrium, facilitated diffusion, carrier protein, osmosis, hypertonic, hypotonic, isotonic, Passive transport, active transport, endocytosis, exocytosis

<u>Cellular Reproduction (Mitosis)</u>: Cell cycle, Interphase, G₁ Phase, S phase, G₂ Phase, M phase, mitosis, cytokinesis, Chromosomes, Chromatin, Prophase, Sister Chromatids, Centromere, Spindle apparatus, metaphase, anaphase, telophase, Cell Plate, Cyclin/cyclin-dependent kinases (CDKs), Cancer, Carcinogens, Oncogene (not in book), apoptosis,

Stem Cells (Embryonic vs. Adult)

Energy (Photosynthesis and Cellular Respiration); Plant Structure and Function: Energy, Thermodynamics, metabolism, photosynthesis, cellular respiration, adenosine triphosphate (ATP), Thylakoid, Granum/Grana, Stroma, pigment, NADP+, Calvin Cycle, Rubisco, PSI/II, C-3/C-4/CAM plants, Anaerobic process, aerobic respiration, aerobic process, glycolysis, Krebs cycle, fermentation, electron transport system, Mitochondria matrix, FADH+, NAD+, Lactic Acid

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Cells	Describe the experiments Pasteur to support or falsify	
C: 7 (17)	the hypothesis of spontaneous generation.	
SS: Cells B.C.2	Distinguish between the "specialized parts for transport of	Cell Membrane Model Lab
C: 7	materials, energy transformations, protein building, waste	Dialysis Tube Lab
	disposal, information feedback and movement."	Cell Size and Diffusion Lab
SS: Cells	Describe the molecular composition of a living cell	Video "Magic of Cells"
C: 7	specifically its "elements and complex molecules."	
SS: Cells	Describe the components of the cell membrane, also known	Construct Plasma Membrane Model
C: 7	as the as the plasma membrane and how it	POGIL Plasma Membrane
	controls "what enters and leaves the cell."	

QUARTER 1

Topic: Chemistry of Biology; Cellular Structure and Function; Cellular Reproduction; Energy

Key Terms: <u>Chemistry of Biology</u>: Atom, nucleus, proton, neutron, electron, element, Isotope, compound, covalent bond, molecule, ion, ionic bond, van der walls forces, chemical reaction, reactant, product, activation energy, catalyst, enzyme, Substrate, active site, polar molecule, hydrogen bond, mixture, solution, solvent, Solute, acid, base, pH, buffer, macromolecules, polymer, carbohydrate, lipid, protein, amino acid, Nucleic acid, nucleotides peptide bond, polypeptide, ATP, RNA, DNA, Monosaccharide, disaccharide, polysaccharide, glycogen, starch <u>Cellular Structure and Function</u>: Cell Theory, Anton van Leeuwenhoek, Robert Hooke, Matthias Schleiden/Theodor Schwann, Louis Pasteur, compound microscope, Electron microscope, Cell, prokaryotic cell, eukaryotic cell, nucleus, organelle, Selective permeability, Phospholipid bilayer, transport protein, fluid mosaic model, concentration gradient, cytoplasm/cytosol, cytoskeleton, microtubules, microfilaments, Chromosomes, Chromatin, Micrometer (μm), nucleolus, cell/plasma membrane, cell wall, lysosome, centrioles, Chloroplast, thylakoids, cell wall, Vacuole, cilia, flagella, DNA/RNA, Nuclear envelope, ribosomes, Chlorophyll, Golgi complex/apparatus, endoplasmic reticulum, mitochondria, diffusion, dynamic equilibrium, facilitated diffusion, carrier protein, osmosis, hypertonic, hypotonic, isotonic, Passive transport, active transport, endocytosis, exocytosis

<u>Cellular Reproduction (Mitosis)</u>: Cell cycle, Interphase, G₁ Phase, S phase, G₂ Phase, M phase, mitosis, cytokinesis, Chromosomes, Chromatin, Prophase, Sister Chromatids, Centromere, Spindle apparatus, metaphase, anaphase, telophase, Cell Plate, Cyclin/cyclin-dependent kinases (CDKs), Cancer, Carcinogens, Oncogene (not in book), apoptosis,

Stem Cells (Embryonic vs. Adult)

Energy (Photosynthesis and Cellular Respiration); Plant Structure and Function: Energy, Thermodynamics, metabolism, photosynthesis, cellular respiration, adenosine triphosphate (ATP), Thylakoid, Granum/Grana, Stroma, pigment, NADP+, Calvin Cycle, Rubisco, PSI/II, C-3/C-4/CAM plants, Anaerobic process, aerobic respiration, aerobic process, glycolysis, Krebs cycle, fermentation, electron transport system, Mitochondria matrix, FADH+, NAD+, Lactic Acid

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Cells	Explain how "complex interactions among different kinds of	Mitosis Activity
C: 9	molecules in the cell cause distinct cycles of activities such as	Mitosis Slides with Microscope
	growth and division."	Mitosis video
		Online root tip activity
		Model mitosis
SS: Cells	Explain how "complex interactions among different kinds of	Leaf Observation Lab
C: 9	molecules in the cell cause distinct cycles of activities such as	Chromatography Lab
	growth and division."	
SS: Diversity and Interdependence of	Investigate "the effects of physical/chemical constraints on	Cellular Respiration Lab
Life	all biological relationships and systems."	

QUARTER 1

Topic: Chemistry of Biology; Cellular Structure and Function; Cellular Reproduction; Energy

Key Terms: Chemistry of Biology: Atom, nucleus, proton, neutron, electron, element, Isotope, compound, covalent bond, molecule, ion, ionic bond, van der walls forces, chemical reaction, reactant, product, activation energy, catalyst, enzyme, Substrate, active site, polar molecule, hydrogen bond, mixture, solution, solvent, Solute, acid, base, pH, buffer, macromolecules, polymer, carbohydrate, lipid, protein, amino acid, Nucleic acid, nucleotides peptide bond, polypeptide, ATP, RNA, DNA, Monosaccharide, disaccharide, polysaccharide, glycogen, starch Cellular Structure and Function: Cell Theory, Anton van Leeuwenhoek, Robert Hooke, Matthias Schleiden/Theodor Schwann, Louis Pasteur, compound microscope, Electron microscope, Cell, prokaryotic cell, eukaryotic cell, nucleus, organelle, Selective permeability, Phospholipid bilayer, transport protein, fluid mosaic model, concentration gradient, cytoplasm/cytosol, cytoskeleton, microtubules, microfilaments, Chromosomes, Chromatin, Micrometer (μm), nucleolus, cell/plasma membrane, cell wall, lysosome, centrioles, Chloroplast, thylakoids, cell wall, Vacuole, cilia, flagella, DNA/RNA, Nuclear envelope, ribosomes, Chlorophyll, Golgi complex/apparatus, endoplasmic reticulum, mitochondria, diffusion, dynamic equilibrium, facilitated diffusion, carrier protein, osmosis, hypertonic, hypotonic, isotonic, Passive transport, active transport, endocytosis, exocytosis

Cellular Reproduction (Mitosis): Cell cycle, Interphase, G1 Phase, S phase, G2 Phase, M phase, mitosis, cytokinesis, Chromosomes, Chromatin, Prophase, Sister Chromatids, Centromere, Spindle apparatus, metaphase, anaphase, telophase, Cell Plate, Cyclin/cyclin-dependent kinases (CDKs), Cancer, Carcinogens, Oncogene (not in book), apoptosis,

Stem Cells (Embryonic vs. Adult)

Energy (Photosynthesis and Cellular Respiration); Plant Structure and Function: Energy, Thermodynamics, metabolism, photosynthesis, cellular respiration, adenosine triphosphate (ATP), Thylakoid, Granum/Grana, Stroma, pigment, NADP+, Calvin Cycle, Rubisco, PSI/II, C-3/C-4/CAM plants, Anaerobic process, aerobic respiration, aerobic process, glycolysis, Krebs cycle, fermentation, electron transport system, Mitochondria matrix, FADH+, NAD+, Lactic Acid

Measurable Skills: model, investigate, analyze, compare/contrast, differentiate, explain, and describe		
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
B.DI.2: Ecosystems • Equilibrium and		
disequilibrium		
C: 8		
SS: Diversity and Interdependence of	Describe how "organisms transform energy (flow of energy)	Photosynthesis Pogil Packet
Life	and matter (cycles of matter) as they survive and	
B.DI.2: Ecosystems • Equilibrium and	reproduce."	
disequilibrium		
C: 8		
SS: Cells /B.C.2	Identify the cellular sites of and follow through the major	POGIL Cell Respiration.
	pathways of anaerobic and aerobic respiration; compare	Cellular respiration lab

QUARTER 1

Topic: Chemistry of Biology; Cellular Structure and Function; Cellular Reproduction; Energy

Key Terms: <u>Chemistry of Biology</u>: Atom, nucleus, proton, neutron, electron, element, Isotope, compound, covalent bond, molecule, ion, ionic bond, van der walls forces, chemical reaction, reactant, product, activation energy, catalyst, enzyme, Substrate, active site, polar molecule, hydrogen bond, mixture, solution, solvent, Solute, acid, base, pH, buffer, macromolecules, polymer, carbohydrate, lipid, protein, amino acid, Nucleic acid, nucleotides peptide bond, polypeptide, ATP, RNA, DNA, Monosaccharide, disaccharide, polysaccharide, glycogen, starch <u>Cellular Structure and Function</u>: Cell Theory, Anton van Leeuwenhoek, Robert Hooke, Matthias Schleiden/Theodor Schwann, Louis Pasteur, compound microscope, Electron microscope, Cell, prokaryotic cell, eukaryotic cell, nucleus, organelle, Selective permeability, Phospholipid bilayer, transport protein, fluid mosaic model, concentration gradient, cytoplasm/cytosol, cytoskeleton, microtubules, microfilaments, Chromosomes, Chromatin, Micrometer (μm), nucleolus, cell/plasma membrane, cell wall, lysosome, centrioles, Chloroplast, thylakoids, cell wall, Vacuole, cilia, flagella, DNA/RNA, Nuclear envelope, ribosomes, Chlorophyll, Golgi complex/apparatus, endoplasmic reticulum, mitochondria, diffusion, dynamic equilibrium, facilitated diffusion, carrier protein, osmosis, hypertonic, hypotonic, isotonic, Passive transport, active transport, endocytosis, exocytosis

<u>Cellular Reproduction (Mitosis)</u>: Cell cycle, Interphase, G₁ Phase, S phase, G₂ Phase, M phase, mitosis, cytokinesis, Chromosomes, Chromatin, Prophase, Sister Chromatids, Centromere, Spindle apparatus, metaphase, anaphase, telophase, Cell Plate, Cyclin/cyclin-dependent kinases (CDKs), Cancer, Carcinogens, Oncogene (not in book), apoptosis,

Stem Cells (Embryonic vs. Adult)

Energy (Photosynthesis and Cellular Respiration); Plant Structure and Function: Energy, Thermodynamics, metabolism, photosynthesis, cellular respiration, adenosine triphosphate (ATP), Thylakoid, Granum/Grana, Stroma, pigment, NADP+, Calvin Cycle, Rubisco, PSI/II, C-3/C-4/CAM plants, Anaerobic process, aerobic respiration, aerobic process, glycolysis, Krebs cycle, fermentation, electron transport system, Mitochondria matrix, FADH+, NAD+, Lactic Acid

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
C: 8	reactants and products for each process, and account for	
	how aerobic respiration produces more ATP per	
	monosaccharide.	
SS: Cells /B.C.2	Explain how photosynthetic organisms use the process of	Stomata Lab
C: 8	photosynthesis and respiration.	
SS: Cells /B.C.2	Explain the interaction between pigments, absorption of	Chromatography lab
C: 8	light, and reflection of light.	
SS: Cells /B.C.2	Describe the light-dependent and light-independent	Video on Photosynthesis
C: 8	reactions of photosynthesis.	

QUARTER 1

Topic: Chemistry of Biology; Cellular Structure and Function; Cellular Reproduction; Energy

Key Terms: <u>Chemistry of Biology</u>: Atom, nucleus, proton, neutron, electron, element, Isotope, compound, covalent bond, molecule, ion, ionic bond, van der walls forces, chemical reaction, reactant, product, activation energy, catalyst, enzyme, Substrate, active site, polar molecule, hydrogen bond, mixture, solution, solvent, Solute, acid, base, pH, buffer, macromolecules, polymer, carbohydrate, lipid, protein, amino acid, Nucleic acid, nucleotides peptide bond, polypeptide, ATP, RNA, DNA, Monosaccharide, disaccharide, polysaccharide, glycogen, starch <u>Cellular Structure and Function</u>: Cell Theory, Anton van Leeuwenhoek, Robert Hooke, Matthias Schleiden/Theodor Schwann, Louis Pasteur, compound microscope, Electron microscope, Cell, prokaryotic cell, eukaryotic cell, nucleus, organelle, Selective permeability, Phospholipid bilayer, transport protein, fluid mosaic model, concentration gradient, cytoplasm/cytosol, cytoskeleton, microtubules, microfilaments, Chromosomes, Chromatin, Micrometer (μm), nucleolus, cell/plasma membrane, cell wall, lysosome, centrioles, Chloroplast, thylakoids, cell wall, Vacuole, cilia, flagella, DNA/RNA, Nuclear envelope, ribosomes, Chlorophyll, Golgi complex/apparatus, endoplasmic reticulum, mitochondria, diffusion, dynamic equilibrium, facilitated diffusion, carrier protein, osmosis, hypertonic, hypotonic, isotonic, Passive transport, active transport, endocytosis, exocytosis

<u>Cellular Reproduction (Mitosis)</u>: Cell cycle, Interphase, G₁ Phase, S phase, G₂ Phase, M phase, mitosis, cytokinesis, Chromosomes, Chromatin, Prophase, Sister Chromatids, Centromere, Spindle apparatus, metaphase, anaphase, telophase, Cell Plate, Cyclin/cyclin-dependent kinases (CDKs), Cancer, Carcinogens, Oncogene (not in book), apoptosis,

Stem Cells (Embryonic vs. Adult)

Energy (Photosynthesis and Cellular Respiration); Plant Structure and Function: Energy, Thermodynamics, metabolism, photosynthesis, cellular respiration, adenosine triphosphate (ATP), Thylakoid, Granum/Grana, Stroma, pigment, NADP+, Calvin Cycle, Rubisco, PSI/II, C-3/C-4/CAM plants, Anaerobic process, aerobic respiration, aerobic process, glycolysis, Krebs cycle, fermentation, electron transport system, Mitochondria matrix, FADH+, NAD+, Lactic Acid

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Cells /B.C.2	Relate the products of the light-dependent reactions to	Elodea Lab
C: 8	products of the light-independent reactions.	
SS: Cells /B.C.2	Design and conduct an experiment demonstrating effects of	<i>Elodea</i> lab
C: 8	environmental factors on photosynthesis.	Design a lab photosynthesis
SS: Cells /B.C.2	Describe the basic mechanisms of plant processes especially	
C: 8 (10) (22: Plant Structure and	movement of materials and plant reproduction.	
Function)		
SS: Cells /B.C.1	Explain the functions of unique plant structures, including	
C: 8 (10) (22: Plant Structure and	the cell wall, chloroplasts, and critical parts of the flower and	
Function)	seed.	

QUARTER 1

Topic: Chemistry of Biology; Cellular Structure and Function; Cellular Reproduction; Energy

Key Terms: <u>Chemistry of Biology</u>: Atom, nucleus, proton, neutron, electron, element, Isotope, compound, covalent bond, molecule, ion, ionic bond, van der walls forces, chemical reaction, reactant, product, activation energy, catalyst, enzyme, Substrate, active site, polar molecule, hydrogen bond, mixture, solution, solvent, Solute, acid, base, pH, buffer, macromolecules, polymer, carbohydrate, lipid, protein, amino acid, Nucleic acid, nucleotides peptide bond, polypeptide, ATP, RNA, DNA, Monosaccharide, disaccharide, polysaccharide, glycogen, starch <u>Cellular Structure and Function</u>: Cell Theory, Anton van Leeuwenhoek, Robert Hooke, Matthias Schleiden/Theodor Schwann, Louis Pasteur, compound microscope, Electron microscope, Cell, prokaryotic cell, eukaryotic cell, nucleus, organelle, Selective permeability, Phospholipid bilayer, transport protein, fluid mosaic model, concentration gradient, cytoplasm/cytosol, cytoskeleton, microtubules, microfilaments, Chromosomes, Chromatin, Micrometer (μm), nucleolus, cell/plasma membrane, cell wall, lysosome, centrioles, Chloroplast, thylakoids, cell wall, Vacuole, cilia, flagella, DNA/RNA, Nuclear envelope, ribosomes, Chlorophyll, Golgi complex/apparatus, endoplasmic reticulum, mitochondria, diffusion, dynamic equilibrium, facilitated diffusion, carrier protein, osmosis, hypertonic, hypotonic, isotonic, Passive transport, active transport, endocytosis, exocytosis

<u>Cellular Reproduction (Mitosis)</u>: Cell cycle, Interphase, G₁ Phase, S phase, G₂ Phase, M phase, mitosis, cytokinesis, Chromosomes, Chromatin, Prophase, Sister Chromatids, Centromere, Spindle apparatus, metaphase, anaphase, telophase, Cell Plate, Cyclin/cyclin-dependent kinases (CDKs), Cancer, Carcinogens, Oncogene (not in book), apoptosis,

Stem Cells (Embryonic vs. Adult)

Energy (Photosynthesis and Cellular Respiration); Plant Structure and Function: Energy, Thermodynamics, metabolism, photosynthesis, cellular respiration, adenosine triphosphate (ATP), Thylakoid, Granum/Grana, Stroma, pigment, NADP+, Calvin Cycle, Rubisco, PSI/II, C-3/C-4/CAM plants, Anaerobic process, aerobic respiration, aerobic process, glycolysis, Krebs cycle, fermentation, electron transport system, Mitochondria matrix, FADH+, NAD+, Lactic Acid

vieasurable Skills: model, investigate, analyze, compare/contrast, differentiate, explain, and describe		
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Cells /B.C.2	Show how chemical reactions (e.g., photosynthesis,	HHMI video: "Got Lactose"
C: 8	fermentation, cellular respiration) can be represented by	Yeast Lab
	chemical formulas.	Corn Lab (Fermentation) Part II-redesign

QUARTER 2

Topic: Sexual Reproduction and Genetics; Complex Inheritance and Human Heredity; Molecular Genetics; Genetics and Biotechnology **Key Terms:**

<u>Sexual Reproduction and Genetics</u>: Gene, homologous chromosomes, gamete, haploid, fertilization, diploid, meiosis, crossing over, Sexual reproduction, asexual reproduction, zygote, synapsis, Genetics, heredity, allele, dominant, recessive, homozygous, heterozygous ,genotype, phenotype, Law of segregation, hybrid, law of independent assortment, true breeding, purebred, First Filial generation, Second filial generation, parent generation, Gregor Mendel, Punnett square, monohybrid, dihybrid, carrier, Genetic recombination, polyploidy <u>Complex Inheritance and Human Heredity</u>: Carrier, Hybrid, Purebred, pedigree, Huntington's disease, cystic fibrosis, Incomplete Dominance, codominance, multiple alleles, epistasis, sex chromosomes, autosome, Sex-linked trait, polygenic trait, Karyotype, telomere, nondisjunction <u>Molecular Genetics</u>: Double Helix, nucleosome, Nucleic Acid, Bacteriophage, Nucleotides, Chargaff's rule, Semiconservative Replication, DNA polymerase, Okazaki fragment, RNA, messenger RNA, ribosomal RNA, transfer RNA, transcription, RNA

Regulation, operon, mutation, mutagen

Genetics and Biotechnology

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Cells B.C.2	Explain how complex interactions among different kinds of molecules	Online root tip activity
C: 10 (7)	in the cell cause distinct cycles of activities such as growth and	Meiosis Modeling
	division."	
SS: Heredity B.H.1: Cellular	Explain how Mendel's Laws of Inheritance are interwoven with current	Face Lab
genetics	knowledge of DNA and chromosome structure and function in modern	
C: 10-11	genetics."	
SS: Heredity B.H.3: Genetic	Explain how sorting and recombination of genes in sexual	Model Meiosis
mechanisms and inheritance	reproduction and meiosis results in variance in traits of the offspring of	
C: 10-11	any two parents.	
SS: Heredity B.H.1, B.H.3	Differentiate between incomplete dominance and sex-linked traits,	Practice Punnett's squares
C: 10-11	goodness of fit, and dihybrid crosses.	
SS: Heredity B.H.1	Apply Chi-square Analysis (goodness of fit) and Punnett's squares to	M&M Chi-square
C: 10-11	statistically analyze data.	Live Fruit Fly Lab
SS: Heredity B.H.3	Differentiate between polygenic inheritance, epistasis, and pleiotropy.	
C: 10-11		
SS: Heredity B.H.4	Explain how different phenotypes result from new combinations of	
C: 10-11	existing genes or from mutations of genes in reproductive cells.	

Intellectual Disposition/Measurable Skills: model, solve, compare, contrast, describe, explain, identify, differentiate

QUARTER 2

Topic: Sexual Reproduction and Genetics; Complex Inheritance and Human Heredity; Molecular Genetics; Genetics and Biotechnology Key Terms: Sexual Reproduction and Genetics: Gene, homologous chromosomes, gamete, haploid, fertilization, diploid, meiosis, crossing over, Sexual reproduction, asexual reproduction, zygote, synapsis, Genetics, heredity, allele, dominant, recessive, homozygous, heterozygous ,genotype, phenotype, Law of segregation, hybrid, law of independent assortment, true breeding, purebred, First Filial generation, Second filial generation, parent generation, Gregor Mendel, Punnett square, monohybrid, dihybrid, carrier, Genetic recombination, polyploidy Complex Inheritance and Human Heredity: Carrier, Hybrid, Purebred, pedigree, Huntington's disease, cystic fibrosis, Incomplete Dominance, codominance, multiple alleles, epistasis, sex chromosomes, autosome, Sex-linked trait, polygenic trait, Karyotype, telomere, nondisjunction <u>Molecular Genetics</u>: Double Helix, nucleosome, Nucleic Acid, Bacteriophage, Nucleotides, Chargaff's rule, Semiconservative Replication, DNA polymerase, Okazaki fragment, RNA, messenger RNA, ribosomal RNA, transfer RNA, transcription, RNA polymerase, intron, exon, Codon, translation, ribosome, anti-codon, One gene-one enzyme hypothesis, Gene Regulation, operon, mutation, mutagen

Genetics and Biotechnology

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Heredity B.H.1	Describe the process of meiosis.	POGIL Meiosis
C: 10		
SS: Heredity B.H.3	Describe the mode of inheritance in commonly inherited disorders	
C: 11	(e.g. sickle cell, Down syndrome, Turner's syndrome, PKU).	
SS: Heredity B.H.1	Identify and explain Mendel's law of segregation and law of	Coin Toss Lab
C: 10	independent assortment.	
SS: Heredity B.H.1	Explain how the process of meiosis reveals the mechanism behind	
C: 10	Mendel's conclusions about segregation and independent assortment	
	on a molecular level.	
SS: Heredity B.H.3	Define and provide an example of the following: genotype, phenotype,	Human Trait Activity
C: 10	dominant allele, recessive allele, codominant allele, incompletely	
	dominant alleles, homozygous, heterozygous and, carrier.	
SS: Heredity B.H.3	Explain sex-linked patterns of inheritance in terms of some genes	Genetic Problems
C: 10-11	being absent from the smaller Y chromosome, and thus makes (XY)	
	having a different chance of exhibiting certain traits than do females	
	(XX).	

Intellectual Disposition/Measurable Skills: model, solve, compare, contrast, describe, explain, identify, differentiate

QUARTER 2

Topic: Sexual Reproduction and Genetics; Complex Inheritance and Human Heredity; Molecular Genetics; Genetics and Biotechnology **Key Terms:** Sexual Reproduction and Genetics: Gene, homologous chromosomes, gamete, haploid, fertilization, diploid, meiosis, crossing over, Sexual reproduction, asexual reproduction, zygote, synapsis, Genetics, heredity, allele, dominant, recessive, homozygous, heterozygous , genotype, phenotype, Law of segregation, hybrid, law of independent assortment, true breeding, purebred, First Filial generation, Second filial generation, parent generation, Gregor Mendel, Punnett square, monohybrid, dihybrid, carrier, Genetic recombination, polyploidy Complex Inheritance and Human Heredity: Carrier, Hybrid, Purebred, pedigree, Huntington's disease, cystic fibrosis, Incomplete Dominance, codominance, multiple alleles, epistasis, sex chromosomes, autosome, Sex-linked trait, polygenic trait, Karyotype, telomere, nondisjunction Molecular Genetics: Double Helix, nucleosome, Nucleic Acid, Bacteriophage, Nucleotides, Chargaff's rule, Semiconservative Replication, DNA polymerase, Okazaki fragment, RNA, messenger RNA, ribosomal RNA, transfer RNA, transcription, RNA polymerase, intron, exon, Codon, translation, ribosome, anti-codon, One gene-one enzyme hypothesis, Gene Regulation, operon, mutation, mutagen

Genetics and Biotechnology

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS :Heredity B.H.3	Construct and interpret Punnett squares and pedigree charts (e.g.,	Genetic Problems
C: 10-11	calculate and predict phenotypic and genotypic ratios and probabilities).	Penny Lab
SS: Heredity B.H.1	Infer parental genotypes and phenotypes from offspring data	Pedigree Problems
C: 10-11	presented in pedigree charts from the genotypic and phenotypic ratios of offspring.	Live Fruit Fly Lab
SS: Cells:B.C.2	Explain how cells make proteins, and how proteins catalyze most	Protein Synthesis Activity
SS: Heredity : B.H.2	chemical reactions in cells.	Codon Bingo
C: 12		
SS: Cells:B.C.2	Relate DNA sequences to protein structure in cells.	
SS: Heredity: B.H.2		
C: 12		
SS: Heredity B.H.2	Describe how each organism has a genome that contains all of the	DNA extraction Lab
C: 12	biological information needed to build and maintain a living example	
	of that organism.	
SS: Heredity B.H.2	Explain how biological information contained in a genome is encoded	DNA Replication Activity
C: 12	in its DNA and divided into discrete units called genes.	DNA Replication Modeling

Intellectual Dispecition (Massurable Skills, model, solve, compare, contract, describe, evolution, identify, differentiate

QUARTER 2

Topic: Sexual Reproduction and Genetics; Complex Inheritance and Human Heredity; Molecular Genetics; Genetics and Biotechnology **Key Terms:**

Sexual Reproduction and Genetics: Gene, homologous chromosomes, gamete, haploid, fertilization, diploid, meiosis, crossing over, Sexual reproduction, asexual reproduction, zygote, synapsis, Genetics, heredity, allele, dominant, recessive, homozygous, heterozygous ,genotype, phenotype, Law of segregation, hybrid, law of independent assortment, true breeding, purebred, First Filial generation, Second filial generation, parent generation, Gregor Mendel, Punnett square, monohybrid, dihybrid, carrier, Genetic recombination, polyploidy Complex Inheritance and Human Heredity: Carrier, Hybrid, Purebred, pedigree, Huntington's disease, cystic fibrosis, Incomplete Dominance, codominance, multiple alleles, epistasis, sex chromosomes, autosome, Sex-linked trait, polygenic trait, Karyotype, telomere, nondisjunction Molecular Genetics: Double Helix, nucleosome, Nucleic Acid, Bacteriophage, Nucleotides, Chargaff's rule, Semiconservative Replication, DNA polymerase, Okazaki fragment, RNA, messenger RNA, ribosomal RNA, transfer RNA, transcription, RNA polymerase, intron, exon, Codon, translation, ribosome, anti-codon, One gene-one enzyme hypothesis, Gene Regulation, operon, mutation, mutagen

Genetics and Biotechnology

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
		DNA animation
SS: Heredity B.H.2	Explain how the sequence of DNA bases on a chromosome determines	
C: 12	the sequence of amino acids in a protein.	
SS: Heredity B.H.2	Explain how inserting, deleting or substituting segments of DNA	GMO argument/packet
C: 12	molecules can alter genes.	
SS: Heredity B.H.3	Explain how altered genes may be passed to every cell that develops	
C: 12	from it, and how mutations in gametes can be passed to offspring.	
SS: Heredity B.H.5	Describe how different genes are active in different types	
C: 12	of cells influenced by the cell's environment and past history.	
SS: Heredity B.H.1	Explain how cells in an individual can be very different from one	
C: 12	another even though they are descended from a single cell, all having	
	identical genetic instructions.	
SS: Heredity B.H.2	Describe how the development of the model for DNA structure was	Video: "Photo 51"
C: 12	the result of the use of technology and the studies and ideas of many	
	scientists.	
SS: Heredity B.H.2	Explain how "genes code for protein and the sequence of DNA bases in	Protein Synthesis Activity
C: 12	a chromosome determines the sequence of amino acids in a protein.	

Intellectual Disposition/Measurable Skills: model, solve, compare, contrast, describe, explain, identify, differentiate

QUARTER 2

Topic: Sexual Reproduction and Genetics; Complex Inheritance and Human Heredity; Molecular Genetics; Genetics and Biotechnology **Key Terms:**

Sexual Reproduction and Genetics: Gene, homologous chromosomes, gamete, haploid, fertilization, diploid, meiosis, crossing over, Sexual reproduction, asexual reproduction, zygote, synapsis, Genetics, heredity, allele, dominant, recessive, homozygous, heterozygous ,genotype, phenotype, Law of segregation, hybrid, law of independent assortment, true breeding, purebred, First Filial generation, Second filial generation, parent generation, Gregor Mendel, Punnett square, monohybrid, dihybrid, carrier, Genetic recombination, polyploidy Complex Inheritance and Human Heredity: Carrier, Hybrid, Purebred, pedigree, Huntington's disease, cystic fibrosis, Incomplete Dominance, codominance, multiple alleles, epistasis, sex chromosomes, autosome, Sex-linked trait, polygenic trait, Karyotype, telomere, nondisjunction Molecular Genetics: Double Helix, nucleosome, Nucleic Acid, Bacteriophage, Nucleotides, Chargaff's rule, Semiconservative Replication, DNA polymerase, Okazaki fragment, RNA, messenger RNA, ribosomal RNA, transfer RNA, transcription, RNA polymerase, intron, exon, Codon, translation, ribosome, anti-codon, One gene-one enzyme hypothesis, Gene Regulation, operon, mutation, mutagen

Constitution, Operation, matation, me

Genetics and Biotechnology

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Cells B.H.2	Explain how the sequence of DNA bases on a chromosome determines	Codon Coding
C: 12	the sequence of amino acids in a protein.	Codon Bingo
SS:Heredity B.H.2	Illustrate how all cell organelles work together by describing the step-	
C: 12 (7)	by-step process of the translation of an mRNA strand into a protein and its subsequent processing by organelles so that the protein is appropriately package, labeled, and eventually exported by the cell.	
SS: Heredity B.H.2 C: 12	Describe the basic structure and function of DNA, mRNA, tRNA, amino acids, polypeptides, and proteins (e.g. replication, transcription, and translation).	
SS: Heredity B.H.2 C: 12	Describe the experiments of major scientists in determining both the structure of DNA and the central dogma.	
SS: Heredity B.H.2 C: 12	Use mRNA codon charts to determine amino acid sequences of example polypeptides.	Codon Coding
SS: Heredity B.H.2 C: 12	Use mRNA codon charts to determine the effects of different types of mutations on amino acid sequence and protein structure (e.g., sickle cell).	

Intellectual Disposition/Measurable Skills: model, solve, compare, contrast, describe, explain, identify, differentiate

QUARTER 2

Topic: Sexual Reproduction and Genetics; Complex Inheritance and Human Heredity; Molecular Genetics; Genetics and Biotechnology			
Key Terms:	Key Terms:		
Sexual Reproduction and Genetic	<u>cs</u> : Gene, homologous chromosomes, gamete, haploid, fertilization, diplo	oid, meiosis, crossing over, Sexual	
reproduction, asexual reproducti	ion, zygote, synapsis, Genetics, heredity, allele, dominant, recessive, hon	nozygous, heterozygous ,genotype,	
phenotype, Law of segregation, h	nybrid, law of independent assortment, true breeding, purebred, First Fil	ial generation, Second filial	
generation, parent generation, G	iregor Mendel, Punnett square, monohybrid, dihybrid, carrier, Genetic re	ecombination, polyploidy	
Complex Inheritance and Human	Heredity: Carrier, Hybrid, Purebred, pedigree, Huntington's disease, cys	tic fibrosis, Incomplete Dominance,	
codominance, multiple alleles, ep	pistasis, sex chromosomes, autosome, Sex-linked trait, polygenic trait, Ka	aryotype, telomere, nondisjunction	
Molecular Genetics: Double Helix	x, nucleosome, Nucleic Acid, Bacteriophage, Nucleotides, Chargaff's rule,	Semiconservative Replication, DNA	
polymerase, Okazaki fragment, R	polymerase, Okazaki fragment, RNA, messenger RNA, ribosomal RNA, transfer RNA, transcription, RNA		
polymerase, intron, exon, Codon	polymerase, intron, exon, Codon, translation, ribosome, anti-codon, One gene-one enzyme hypothesis, Gene		
Regulation, operon, mutation, m	Regulation, operon, mutation, mutagen		
Genetics and Biotechnology	Genetics and Biotechnology		
Intellectual Disposition/Measura	able Skills: model, solve, compare, contrast, describe, explain, identify, d	lifferentiate	
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations	
SS: Cells B.C.2	Describe how gene expression is regulated in organisms such that	POGIL Gene Expression	
C: 12	specific proteins are synthesized only when they are needed by the		
	cell (e.g., allowing cell specialization).		
SS: Heredity B.H.5	Complete a major project relating to recombinant DNA cloning, or	Video: "Clone"	
C: 12-13	stem cell research.		

QUARTER 3

Topic: Evolution: Organizing Life's Diversity

Key Terms:

Fossil Evidence of Change: Fossil K-T Boundary

<u>Evolution</u>: Artificial Selection, Natural Selection, Evolution, *The Origin of Specie*, Derived trait, ancestral trait, homologous structure, vestigial structure, analogous structure, embryo, Biogeography, fitness, camouflage, mimicry, fossil, adaptation, Hardy-Weinberg Principle, genetic drift, founder effect, bottleneck, gene flow, stabilizing natural selection, Directional natural selection, disruptive selection, sexual selection, prezygotic isolationg mechanism, postzygotic isolating mechanism, Allopatric speciation, sympatric speciation, adaptive radiation, gradualism, punctuated equilibrium

Organizing Life's Diversity: Classification, Taxonomy, Binomial nomenclature, Scientific name, Carolus

Linnaeus, taxon, Domain, Phylogeny, morphological characters, biochemical characters, Cladogram, phylogenic tree, Archaea, Peptidoglycan, Eukarya, Protista, Fungus, Plantae, Animalia, Virus

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Diversity and Interdependence	Describe how both morphological comparisons and	Salamander Lab
of Life B.DI.1	molecular evidence must be used to describe biodiversity	
SS: Evolution B.E.2	through cladograms.	
C: 14/15		
SS: Cells B.C.1	Explain how once cells with nuclei developed about a	
SS: Evolution B.E.2	billion years ago, increasingly complex multicellular	
C: 14/15	organisms evolved.	
SS: Evolution B.E.2	Describe how biological evolution explains the natural	Video: "Islands Evolution"
C: 14/15	origins for the diversity of life.	
SS: Evolution B.E.1	Explain how evolution changes the properties of a trait in	Peppered Moth Activity
C: 14/15	populations.	
SS: Heredity B.H.5	Explain how modern synthesis is the unification of	
C: 14/15	genetics and evolution and historical perspectives of	
	evolutionary theory.	
SS: Evolution B.E.1	Distinguish between gene flow, mutation, speciation,	Hardy-Weinberg Problems
C: 14/15	natural selection, genetic drift, sexual selection, and	
	Hardy Weinberg's law.	
SS: Evolution B.E.2	Explain how Natural Selection is used to describe the	Pock Pocket Mouse Activity
C: 14/15	process by which traits become more or less common in a	HHMI Video: "Rock Pocket Mouse"
	population due to consistent environmental effects upon	

QUARTER 3

Topic: Evolution: Organizing Life's Diversity

Key Terms:

Fossil Evidence of Change: Fossil K-T Boundary

<u>Evolution</u>: Artificial Selection, Natural Selection, Evolution, *The Origin of Specie*, Derived trait, ancestral trait, homologous structure, vestigial structure, analogous structure, embryo, Biogeography, fitness, camouflage, mimicry, fossil, adaptation, Hardy-Weinberg Principle, genetic drift, founder effect, bottleneck, gene flow, stabilizing natural selection, Directional natural selection, disruptive selection, sexual selection, prezygotic isolationg mechanism, postzygotic isolating mechanism, Allopatric speciation, sympatric speciation, adaptive radiation, gradualism, punctuated equilibrium

Organizing Life's Diversity: Classification, Taxonomy, Binomial nomenclature, Scientific name, Carolus

Linnaeus, taxon, Domain, Phylogeny, morphological characters, biochemical characters, Cladogram, phylogenic tree, Archaea, Peptidoglycan, Eukarya, Protista, Fungus, Plantae, Animalia, Virus

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
	the survival or reproduction of the individual with the	
	trait.	
SS: Evolution B.E.2	Apply the Hardy-Weinberg law to explain gene frequency	
C: 15	patterns in a population.	
SS: Evolution B.E.1	Explain how evolution is the decent with modification of	
C: 15	different lineages from common ancestors.	
SS: Evolution B.E.1	Explain how populations evolve over time.	
C: 15		
SS: Evolution B.E.1	Describe how evolution is the consequence of the	
C: 15	interactions of (1) potential for a population to increase	
	its numbers, (2) genetic variability of offspring due to	
	mutation and recombination of genes, (3) finite supply of	
	the resources required for life, and (4) differential	
	survival and reproduction of individuals with the specific	
	phenotype.	
SS: Evolution B.E.1	Apply the knowledge of mutation and genetic drift to	
C: 15	real-world examples.	
SS: Evolution B.E.1	Explain how heritable characteristics influence how likely	
C: 15	an organism is to survive and reproduce in a particular	
	environment.	

QUARTER 3

Topic: Evolution: Organizing Life's Diversity

Key Terms:

Fossil Evidence of Change: Fossil K-T Boundary

<u>Evolution</u>: Artificial Selection, Natural Selection, Evolution, *The Origin of Specie*, Derived trait, ancestral trait, homologous structure, vestigial structure, analogous structure, embryo, Biogeography, fitness, camouflage, mimicry, fossil, adaptation, Hardy-Weinberg Principle, genetic drift, founder effect, bottleneck, gene flow, stabilizing natural selection, Directional natural selection, disruptive selection, sexual selection, prezygotic isolationg mechanism, postzygotic isolating mechanism, Allopatric speciation, sympatric speciation, adaptive radiation, gradualism, punctuated equilibrium

Organizing Life's Diversity: Classification, Taxonomy, Binomial nomenclature, Scientific name, Carolus

Linnaeus, taxon, Domain, Phylogeny, morphological characters, biochemical characters, Cladogram, phylogenic tree, Archaea, Peptidoglycan, Eukarya, Protista, Fungus, Plantae, Animalia, Virus

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Evolution B.E.1	Formulate and revise explanations for gene flow and	
C: 15	sexual selection based on real-world problems.	
C: 15	Explain the biological definition of evolution.	
SS: Evolution B.E.2	Explain the influence of other scientists (e.g., Malthus,	
C: 15	Wallace, Lamarck, and Lyell) and of Darwin's trip on the	
	HMS Beagle in formulating Darwin's ideas of natural	
	selection.	
SS: Evolution B.E.2	Contrast Lamark and Darwin's ideas about changes in	
C: 15	organisms over time.	
SS: Evolution B.E.1	Explain how evolution is the decent with modification of	
C: 15	different lineages from common ancestors.	
SS: Evolution B.E.1	Explain how populations evolve over time.	
C: 15		
SS: Evolution B.E.1	Describe how evolution is the consequence of the	
C: 15	interactions of (1) potential for a population to increase	
	its numbers, (2) genetic variability of offspring due to	
	mutation and recombination of genes, (3) finite supply of	
	the resources required for life, and (4) differential	
	survival and reproduction of individuals with the specific	
	phenotype.	

QUARTER 3

Topic: Evolution: Organizing Life's Diversity

Key Terms:

Fossil Evidence of Change: Fossil K-T Boundary

<u>Evolution</u>: Artificial Selection, Natural Selection, Evolution, *The Origin of Specie*, Derived trait, ancestral trait, homologous structure, vestigial structure, analogous structure, embryo, Biogeography, fitness, camouflage, mimicry, fossil, adaptation, Hardy-Weinberg Principle, genetic drift, founder effect, bottleneck, gene flow, stabilizing natural selection, Directional natural selection, disruptive selection, sexual selection, prezygotic isolationg mechanism, postzygotic isolating mechanism, Allopatric speciation, sympatric speciation, adaptive radiation, gradualism, punctuated equilibrium

Organizing Life's Diversity: Classification, Taxonomy, Binomial nomenclature, Scientific name, Carolus

Linnaeus, taxon, Domain, Phylogeny, morphological characters, biochemical characters, Cladogram, phylogenic tree, Archaea, Peptidoglycan, Eukarya, Protista, Fungus, Plantae, Animalia, Virus

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Evolution B.E.1	Provide examples of behaviors that have evolved through	
C: 15	natural selection (e.g., migration and courtship rituals).	
SS: Evolution B.E.2	Design, perform and analyze a laboratory simulation of	Rock Pocket Mouse Activity
C: 15	natural selection on a working population.	
SS: Evolution B.E.1	Describe the basic types of selection, including disruptive,	
C: 15	stabilizing, and directional.	
SS: Evolution B.E.2	Specifically describe the conditions required to be	
C: 15	considered a species (e.g., reproductive isolation and	
	geographic isolation).	
SS: Evolution B.E.1	Explain how natural selection and its evolutionary	
C: 15	consequences (e.g., adaptation or extinction) provide a	
	scientific explanation for the fossil record of ancient life-	
	forms and the striking molecular similarities observed	
	among the diverse species of living organisms.	
SS: Diversity and Independence of	Discuss evidence from the fields of geology,	
Life B.DI.1	biochemistry, embryology, comparative anatomy, and	
C: 15	comparative physiology that points to shared	
	evolutionary relationships.	

QUARTER 3

Topic: Evolution: Organizing Life's Diversity

Key Terms:

Fossil Evidence of Change: Fossil K-T Boundary

<u>Evolution</u>: Artificial Selection, Natural Selection, Evolution, *The Origin of Specie*, Derived trait, ancestral trait, homologous structure, vestigial structure, analogous structure, embryo, Biogeography, fitness, camouflage, mimicry, fossil, adaptation, Hardy-Weinberg Principle, genetic drift, founder effect, bottleneck, gene flow, stabilizing natural selection, Directional natural selection, disruptive selection, sexual selection, prezygotic isolationg mechanism, postzygotic isolating mechanism, Allopatric speciation, sympatric speciation, adaptive radiation, gradualism, punctuated equilibrium

Organizing Life's Diversity: Classification, Taxonomy, Binomial nomenclature, Scientific name, Carolus

Linnaeus, taxon, Domain, Phylogeny, morphological characters, biochemical characters, Cladogram, phylogenic tree, Archaea, Peptidoglycan, Eukarya, Protista, Fungus, Plantae, Animalia, Virus

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Diversity and Independence of	Explain how cells in an individual can be very different	
Life B.DI.1	from one another even though they are descended from	
C: 15, 17	a single cell, all having identical instructions.	
SS: Diversity and Independence of	Explain how Earth's life-forms have evolved from earlier	
Life B.DI.1	species as a consequence of interaction of (a) the	
C: 15	potential of a species to increase its numbers and (b)	
	genetic variability of offspring due to mutation	
	and recombination of DNA.	
SS: Diversity and Independence of	Distinguish between catastrophism, gradualism, and	
Life B.DI.1	punctuated equilibrium.	
C: 15		
SS: Evolution B.E.1	Discuss Darwin's principle of survival of the fittest and	Pocket Mouse Activity
C: 15	explain what Darwin meant by natural selection.	
SS: Evolution B.E.2	Explain how the diversity of organisms and ecological	Galapagos Video
SS: Diversity and Interdependence	niches they occupy result from more than 3.5 billion	
of Life	years of evolution.	
C: 17		
SS: Diversity and Interdependence	Explain how classification systems are	Shark Activity
of Life B.DI.1	frameworks developed by scientists for describing the	
SS: Evolution B.E.2		

QUARTER 3

Topic: Evolution: Organizing Life's Diversity

Key Terms:

Fossil Evidence of Change: Fossil K-T Boundary

<u>Evolution</u>: Artificial Selection, Natural Selection, Evolution, *The Origin of Specie*, Derived trait, ancestral trait, homologous structure, vestigial structure, analogous structure, embryo, Biogeography, fitness, camouflage, mimicry, fossil, adaptation, Hardy-Weinberg Principle, genetic drift, founder effect, bottleneck, gene flow, stabilizing natural selection, Directional natural selection, disruptive selection, sexual selection, prezygotic isolationg mechanism, postzygotic isolating mechanism, Allopatric speciation, sympatric speciation, adaptive radiation, gradualism, punctuated equilibrium

Organizing Life's Diversity: Classification, Taxonomy, Binomial nomenclature, Scientific name, Carolus

Linnaeus, taxon, Domain, Phylogeny, morphological characters, biochemical characters, Cladogram, phylogenic tree, Archaea, Peptidoglycan, Eukarya, Protista, Fungus, Plantae, Animalia, Virus

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
C: 17	diversity of organisms indicating the degree of	
	relatedness between organisms.	
SS: Evolution B.E.2	Explain how Earth's present-day species descended from	Salamander Lab
C: 15, 17	earlier, common ancestral species.	
SS: Evolution B.E.1	Describe how evolution provides a natural explanation	HHMI Video "Dinosaurs to Birds"
C: 15,17	for the diversity of life on Earth as represented in the	
	fossil record, in the similarities of existing species and in	
	modern molecular evidence.	
SS: Evolution B.E.2	Differentiate among chemical evolution and organic	Time Line
C: 15,17	evolution and the evolutionary steps along the way to	
	aerobic heterotrophs and photosynthetic autotrophs.	
SS: Diversity and Independence of	Explain how organisms are classified into a hierarchy of	Phylogenetic Tree Activity
Life B.DI.1	groups and subgroups based on similarities that reflect	Classification Conundrum
C: 17	their evolutionary relationships.	
SS: Diversity and Independence of	List each of the major levels in the hierarchy of taxa:	Classification Lab
Life B.DI.1	kingdom, Phylum, class, order, family, genus, and	
C: 17	species.	
SS: Diversity and Independence of	Explain the binomial nomenclature system.	
Life B.DI.1		
C: 17		

QUARTER 3

Topic: Evolution: Organizing Life's Diversity

Key Terms:

Fossil Evidence of Change: Fossil K-T Boundary

<u>Evolution</u>: Artificial Selection, Natural Selection, Evolution, *The Origin of Specie*, Derived trait, ancestral trait, homologous structure, vestigial structure, analogous structure, embryo, Biogeography, fitness, camouflage, mimicry, fossil, adaptation, Hardy-Weinberg Principle, genetic drift, founder effect, bottleneck, gene flow, stabilizing natural selection, Directional natural selection, disruptive selection, sexual selection, prezygotic isolationg mechanism, postzygotic isolating mechanism, Allopatric speciation, sympatric speciation, adaptive radiation, gradualism, punctuated equilibrium

Organizing Life's Diversity: Classification, Taxonomy, Binomial nomenclature, Scientific name, Carolus

Linnaeus, taxon, Domain, Phylogeny, morphological characters, biochemical characters, Cladogram, phylogenic tree, Archaea, Peptidoglycan, Eukarya, Protista, Fungus, Plantae, Animalia, Virus

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Diversity and Independence of	Construct and use a dichotomous key.	Shark Key
Life B.DI.1		
C: 17		
SS: Diversity and Independence of	Explain classification criteria for fungi, plants, and	
Life B.DI.1	animals.	
C: 17		
SS: Diversity and Independence of	Compare the major divisions of animals.	Classification Lab
Life		
B.DI.1		
C: 17		
SS: Diversity and Independence of	Explain how the diversity of organisms and ecological	
Life B.DI.1	niches they occupy result from more than 3.5 billion	
C: 15, 17 (2)	years of evolution.	

QUARTER 4

Topic: Principles of Ecology; Communities, Biomes and Ecosystems; Population Ecology

Key Terms:

Principles of Ecology

Ecology, Biosphere, Biotic, Abiotic, population, community, ecosystem, biome, Habitat, niche, predation, symbiosis, mutualism, commensalis m, parasitism, Autotroph, heterotroph, herbivore, carnivore, omnivore, detritivore, Trophic level, Food chain, food

web, biomass, matter, biogeochemical cycle, nitrogen fixation, denitrification

Communities, Biomes, and Ecosystems (Succession)

Community, Limiting Factor, Range of tolerance, ecological succession, primary succession, Climax community, secondary

succession, Lichen, pioneer species, Ecosystem, Biome, Weather, latitude, climate, Arctic/Alpine Tundra, Taiga, desert, Mid-

latitude/Temperate Deciduous Forest, Chaparral/scrubland, grassland, savanna, Tropical rain forest, Tropical, ozone layer, Greenhouse effect, polar Climatogram, Deciduous, Arboreal, Permafrost, arid

Population Ecology

Population Density, Dispersion/Dispersal, Density-independent factor, density- dependent factor, Population growth

rate, emigration, immigration, death/mortality rate, Birth/natality rate, exponential growth, Logistic growth, carrying capacity, r-strategist, k-strategist, demography/demographics, demographic transition, zero population growth, age structure/population pyramid

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
B.DI: DIVERSITY AND		
INDEPENDENCE OF LIFE		
B.DI.1: Biodiversity • Genetic		
diversity • Species diversity		
B.DI.2: Ecosystems • Equilibrium		
and disequilibrium • Carrying		
capacity		
B.DI.3: Loss of Diversity • Climate		
change • Anthropocene effects •		
Extinction • Invasive species		
SS: Cells	Describe the biological criteria that needs to be met in	
C: 1	order for an organism to be considered alive.	
SS: Diversity and Independence of	Read and describe current journal articles relating to	DDT/Eutrophication
Life B.DI.3	environmental concerns.	
C: 2		

QUARTER 4

Topic: Principles of Ecology; Communities, Biomes and Ecosystems; Population Ecology

Key Terms:

Principles of Ecology

Ecology, Biosphere, Biotic, Abiotic, population, community, ecosystem, biome, Habitat, niche, predation, symbiosis, mutualism, commensalis m, parasitism, Autotroph, heterotroph, herbivore, carnivore, omnivore, detritivore, Trophic level, Food chain, food

web, biomass, matter, biogeochemical cycle, nitrogen fixation, denitrification

Communities, Biomes, and Ecosystems (Succession)

Community, Limiting Factor, Range of tolerance, ecological succession, primary succession, Climax community, secondary

succession, Lichen, pioneer species, Ecosystem, Biome, Weather, latitude, climate, Arctic/Alpine Tundra, Taiga, desert, Mid-

latitude/Temperate Deciduous Forest, Chaparral/scrubland, grassland, savanna, Tropical rain forest, Tropical, ozone layer, Greenhouse effect, polar Climatogram, Deciduous, Arboreal, Permafrost, arid

Population Ecology

Population Density, Dispersion/Dispersal, Density-independent factor, density- dependent factor, Population growth

rate, emigration, immigration, death/mortality rate, Birth/natality rate, exponential growth, Logistic growth, carrying capacity, r-strategist, k-strategist, demography/demographics, demographic transition, zero population growth, age structure/population pyramid

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Diversity and Independence of	Define and provide examples of each level of organization	
Life B.DI.1	(e.g., biosphere, biome, ecosystem, community,	
C: 1-4	population, multicellular organism, organ system, organ,	
	tissue, cell, organelle, molecule, atom, and subatomic	
	particle).	
SS: Diversity and Independence of	Design and conduct investigations appropriately using	Salinization Lab
Life B.DI.2	essential processes of inquiry.	Yeast Lab
C: 1-4		
SS: Diversity and Independence of	Use mathematics to enhance the scientific inquiry	Population Sampling Lab
Life B.DI.2	process.	Population Pyramids
C: 3-4		
SS: Diversity and Interdependence	Investigate the effects of physical/chemical constraints	Food Web Lab (DDT)
of Life B.DI.3	on all biological relationships and systems.	
C: 3		

QUARTER 4

Topic: Principles of Ecology; Communities, Biomes and Ecosystems; Population Ecology

Key Terms:

Principles of Ecology

Ecology, Biosphere, Biotic, Abiotic, population, community, ecosystem, biome, Habitat, niche, predation, symbiosis, mutualism, commensalis m, parasitism, Autotroph, heterotroph, herbivore, carnivore, omnivore, detritivore, Trophic level, Food chain, food

web, biomass, matter, biogeochemical cycle, nitrogen fixation, denitrification

Communities, Biomes, and Ecosystems (Succession)

Community, Limiting Factor, Range of tolerance, ecological succession, primary succession, Climax community, secondary

succession, Lichen, pioneer species, Ecosystem, Biome, Weather, latitude, climate, Arctic/Alpine Tundra, Taiga, desert, Mid-

latitude/Temperate Deciduous Forest, Chaparral/scrubland, grassland, savanna, Tropical rain forest, Tropical, ozone layer, Greenhouse effect, polar Climatogram, Deciduous, Arboreal, Permafrost, arid

Population Ecology

Population Density, Dispersion/Dispersal, Density-independent factor, density- dependent factor, Population growth

rate, emigration, immigration, death/mortality rate, Birth/natality rate, exponential growth, Logistic growth, carrying capacity, r-strategist, k-strategist, demography/demographics, demographic transition, zero population growth, age structure/population pyramid

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Diversity and Interdependence	Explain through mathematical interpretation the	
of Life B.DI.2	concepts of carrying capacity and homeostasis within	
C: 1-4	biomes.	
SS: Diversity and Interdependence	Investigate population changes that occur locally or	Reindeer Population Lab
of Life B.DI.3	regionally.	Yellowstone Video
C: 1-4		Population Sampling Lab
		https://www.census.gov/population/intern
		ational/data/idb/informationGateway.php
SS: Diversity and Interdependence of Life B.DI.2	Apply the exponential growth model and logistic growth model to sample populations.	POGIL Populations
C: 4		
SS: Diversity and Interdependence	Explain how ecosystems tend to have cyclic fluctuations	Yellowstone Video
of Life B.DI.2	around a state of rough equilibrium.	

QUARTER 4

Topic: Principles of Ecology; Communities, Biomes and Ecosystems; Population Ecology

Key Terms:

Principles of Ecology

Ecology, Biosphere, Biotic, Abiotic, population, community, ecosystem, biome, Habitat, niche, predation, symbiosis, mutualism, commensalis m, parasitism, Autotroph, heterotroph, herbivore, carnivore, omnivore, detritivore, Trophic level, Food chain, food

web, biomass, matter, biogeochemical cycle, nitrogen fixation, denitrification

Communities, Biomes, and Ecosystems (Succession)

Community, Limiting Factor, Range of tolerance, ecological succession, primary succession, Climax community, secondary

succession, Lichen, pioneer species, Ecosystem, Biome, Weather, latitude, climate, Arctic/Alpine Tundra, Taiga, desert, Mid-

latitude/Temperate Deciduous Forest, Chaparral/scrubland, grassland, savanna, Tropical rain forest, Tropical, ozone layer, Greenhouse effect, polar Climatogram, Deciduous, Arboreal, Permafrost, arid

Population Ecology

Population Density, Dispersion/Dispersal, Density-independent factor, density- dependent factor, Population growth

rate, emigration, immigration, death/mortality rate, Birth/natality rate, exponential growth, Logistic growth, carrying capacity, r-strategist, k-strategist, demography/demographics, demographic transition, zero population growth, age structure/population pyramid

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Diversity and Independence of	Define and provide examples of biosphere, biome,	Climatogram Activity
Life B.DI.2	ecosystem, community, population, species habitat, and	
QC: F.1.a	niche.	
C: 1-4		
SS: Diversity and Independence of	Discuss biotic and abiotic factors that affect land and	Biome Map
Life B.DI.2	aquatic biomes.	Pogil Biomes
C: 3		
SS: Diversity and Independence of	Explain how organisms cooperate and compete in	Food Web
Life B.DI.2	ecosystems and how interrelationships and	Concept Map
C: 1-2	interdependencies of organism may generate ecosystems	Ecological Footprint Activity
	that are stable for thousands of years.	
SS: Diversity and Interdependence	Explain how ecosystems tend to have cyclic fluctuations	
of Life B.DI.2	around a state of rough equilibrium.	
C: 2		

QUARTER 4

Topic: Principles of Ecology; Communities, Biomes and Ecosystems; Population Ecology

Key Terms:

Principles of Ecology

Ecology, Biosphere, Biotic, Abiotic, population, community, ecosystem, biome, Habitat, niche, predation, symbiosis, mutualism, commensalis m, parasitism, Autotroph, heterotroph, herbivore, carnivore, omnivore, detritivore, Trophic level, Food chain, food

web, biomass, matter, biogeochemical cycle, nitrogen fixation, denitrification

Communities, Biomes, and Ecosystems (Succession)

Community, Limiting Factor, Range of tolerance, ecological succession, primary succession, Climax community, secondary

succession, Lichen, pioneer species, Ecosystem, Biome, Weather, latitude, climate, Arctic/Alpine Tundra, Taiga, desert, Mid-

latitude/Temperate Deciduous Forest, Chaparral/scrubland, grassland, savanna, Tropical rain forest, Tropical, ozone layer, Greenhouse effect, polar Climatogram, Deciduous, Arboreal, Permafrost, arid

Population Ecology

Population Density, Dispersion/Dispersal, Density-independent factor, density- dependent factor, Population growth

rate, emigration, immigration, death/mortality rate, Birth/natality rate, exponential growth, Logistic growth, carrying capacity, r-strategist, k-strategist, demography/demographics, demographic transition, zero population growth, age structure/population pyramid

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Diversity and Interdependence	Differentiate between interspecies and intra-species	Reindeer Lab
of Life B.DI.2	competition for resources, and what occurs when a	
C: 2	species immigrates to or emigrates from ecosystems.	
SS: Diversity and Interdependence	Investigate the effects of physical and chemical	Seed Germination Lab (Salinization)
of Life B.DI.3	constraints on all biological relationships and systems.	
C: 3		
SS: Diversity and Independence of	Describe examples of competition, symbiosis, and	Video Clips
Life B.DI.1	predation.	
C: 2-3		
SS: Diversity and Independence of	Explain the process of ecological succession, and describe	Video Clip (Nova)
Life B.DI.2	the different communities that result.	
C: 3		
SS: Diversity and Interdependence	Describe how organisms transform energy (flow of	Biogeochemical Cycle Handout
of Life B.DI.2	energy) and matter (cycles of matter) as they survive and	
C: 2-3	reproduce.	

QUARTER 4

Topic: Principles of Ecology; Communities, Biomes and Ecosystems; Population Ecology

Key Terms:

Principles of Ecology

Ecology, Biosphere, Biotic, Abiotic, population, community, ecosystem, biome, Habitat, niche, predation, symbiosis, mutualism, commensalis m, parasitism, Autotroph, heterotroph, herbivore, carnivore, omnivore, detritivore, Trophic level, Food chain, food

web, biomass, matter, biogeochemical cycle, nitrogen fixation, denitrification

Communities, Biomes, and Ecosystems (Succession)

Community, Limiting Factor, Range of tolerance, ecological succession, primary succession, Climax community, secondary

succession, Lichen, pioneer species, Ecosystem, Biome, Weather, latitude, climate, Arctic/Alpine Tundra, Taiga, desert, Mid-

latitude/Temperate Deciduous Forest, Chaparral/scrubland, grassland, savanna, Tropical rain forest, Tropical, ozone layer, Greenhouse effect, polar Climatogram, Deciduous, Arboreal, Permafrost, arid

Population Ecology

Population Density, Dispersion/Dispersal, Density-independent factor, density- dependent factor, Population growth

rate, emigration, immigration, death/mortality rate, Birth/natality rate, exponential growth, Logistic growth, carrying capacity, r-strategist, k-strategist, demography/demographics, demographic transition, zero population growth, age structure/population pyramid

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: Diversity and Independence of	Explain the concept of carrying capacity.	Reindeer/Human Population Lab
Life B.DI.2		
C: 4		
SS: Diversity and Independence of	Describe the growth of populations, including exponential	Reindeer/Human Population Lab
Life B.DI.2	and logistic growth.	
C: 4		
SS: Diversity and Independence of	Explain how energy flows through ecosystems in one	Food Web
Life B.DI.1	direction, from photosynthetic organisms to herbivores	
C: 2	to carnivores and decomposers.	
SS: Diversity and Independence of	Discuss the role of beneficial bacteria (e.g., in the	Food Web
Life B.DI.1	recycling of nutrients).	Nutrient Cycle Handout/Animation
C: 2		Pogil Nutrient cycles
SS: Diversity and Independence of	Explain how the amount of life any environment can	Yeast Activity Lab
Life B.DI. 2	support is limited by the available matter and energy and	
C: 2		

QUARTER 4

Topic: Principles of Ecology; Communities, Biomes and Ecosystems; Population Ecology

Key Terms:

Principles of Ecology

Ecology, Biosphere, Biotic, Abiotic, population, community, ecosystem, biome, Habitat, niche, predation, symbiosis, mutualism, commensalis m, parasitism, Autotroph, heterotroph, herbivore, carnivore, omnivore, detritivore, Trophic level, Food chain, food

web, biomass, matter, biogeochemical cycle, nitrogen fixation, denitrification

Communities, Biomes, and Ecosystems (Succession)

Community, Limiting Factor, Range of tolerance, ecological succession, primary succession, Climax community, secondary

succession, Lichen, pioneer species, Ecosystem, Biome, Weather, latitude, climate, Arctic/Alpine Tundra, Taiga, desert, Mid-

latitude/Temperate Deciduous Forest, Chaparral/scrubland, grassland, savanna, Tropical rain forest, Tropical, ozone layer, Greenhouse effect, polar Climatogram, Deciduous, Arboreal, Permafrost, arid

Population Ecology

Population Density, Dispersion/Dispersal, Density-independent factor, density- dependent factor, Population growth

rate, emigration, immigration, death/mortality rate, Birth/natality rate, exponential growth, Logistic growth, carrying capacity, r-strategist, k-strategist, demography/demographics, demographic transition, zero population growth, age structure/population pyramid

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
	by the ability of ecosystems to recycle the residue of	
	dead organic materials.	
SS: Diversity and Independence of	Diagram the flow of energy using food webs, food chains,	Food Web Lab
Life B.DI.2	and pyramids (e.g., pyramid of energy, pyramid of	
C: 2	biomass and pyramid of numbers).	
SS: Diversity and Independence of	Discuss and evaluate the significance of human	
Life B.DI.3	interference with major ecosystems.	

	QUARTER 4	
Topic: Bacteria and Viruses; Protists; Anima	S	
Key Terms:		
Bacteria and Viruses		
	ion, conjugation, endospore, Archaea, flagella, P	Photoautotroph, Chemoautotroph, Nitrogen
	ytic cycle, lysogenic cycle, retrovirus, prion, smal	
Protista		
Animals		
Measurable Skills: investigate, identify, des	cribe, explain, locate, recognize, examine	
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
B.DI: DIVERSITY AND		
INDEPENDENCE OF LIFE		
B.DI.1: Biodiversity • Genetic		
diversity • Species diversity		
B.DI.2: Ecosystems • Equilibrium		
and disequilibrium • Carrying		
capacity		
B.DI.3: Loss of Diversity • Climate		
change • Anthropocene effects •		
Extinction • Invasive species		
B.C: CELLS		
B.C.1 : Cell structure and function •		
Structure, function and		
interrelatedness of cell organelles •		
Eukaryotic cells and prokaryotic		
cells		
B.C.2 : Cellular processes •		
Characteristics of life regulated by		
cellular processes •		
Photosynthesis, chemosynthesis,		
cellular respiration, biosynthesis of		
macromolecules		

QUARTER 4		
Topic: Bacteria and Viruses; Protists	; Animals	
Key Terms:		
Bacteria and Viruses		
Bacteria, nucleoid, Capsule, pilus, b	nary fission, conjugation, endospore, Archaea, flagella, Pho	toautotroph, Chemoautotroph, Nitrogen
Fixation, *Legumes, Plasmid, Virus,	capsid, lytic cycle, lysogenic cycle, retrovirus, prion, smallpc	X
<u>Protista</u>		
<u>Animals</u>		
Measurable Skills: investigate, iden	tify, describe, explain, locate, recognize, examine	
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
SS: B.DI: DIVERSITY AND	Distinguish between and among viruses, bacteria,	Protist Lab
INDEPENDENCE OF LIFE B.DI.1	and protista, and give examples of each.	Antiobiotic Lab
C: 18,19		Bacteria Slice Lab with Microscope
		Bacteria Video
		Virus Video
		Epidemiology Study
SS: CELLS B.C.1	Identify major types of animal cells and tissues.	Frog Dissection
C: 24-37		Squid Dissection
SS: Cells B.C.1	Describe the major components and functions of	Frog Dissection
C: 24-37	physiological systems, including skeletal, muscle,	Squid Dissection
	circulatory, respiratory, digestive, urinary, endocrine,	
	nervous, reproductive, and immune.	

District Instructional Resource:

Miller Levine Biology (2019) / Pearson (6-year online subscription: 2019-2020 to 2024-2025)

Standards Alignment:

Ohio Learning Standards (2018) – retrieved Jan. 2, 2019 <u>http://education.ohio.gov/getattachment/Topics/Learning-in-Ohio/Science/Ohios-Learning-Standards-and-MC/SciFinalStandards121018.pdf.aspx?lang=en-US</u>